Milieux diélectriques et polarisation

Présentation

Code interne: JP4POLAR

Description

Aspects macroscopiques

Vecteurs polarisation P et déplacement D.

Théorème de Gauss pour D. Relation de passage entre deux milieux.

Potentiel et champ créés par un milieu uniformément polarisé.

Milieux diélectriques linéaires. Susceptibilité diélectrique. Permittivité relative. Exemple du condensateur à lame diélectrique.

Aspects microscopiques

Polarisabilité: électronique, atomique, ionique, dipolaire.

Champ local (de Lorentz).

Propagation d'une onde électromagnétique dans un diélectrique :

Milieux isotropes (modèle de Drude-Lorentz, variations de la constante diélectrique et de l'indice de réfraction, indice complexe)
Milieux anisotropes uniaxes (plan de polarisation et plan d'onde, lignes neutres, action d'une lame à retard sur une polarisation donnée, analyse d'une lumière polarisée, interférences en lumière polarisée)

Modalités de contrôle des connaissances

Évaluation initiale / Session principale - Épreuves

Type d'évaluation	Nature de l'épreuve	Durée (en minutes)	Nombre d'épreuves	Coefficient de l'épreuve	Note éliminatoire de l'épreuve	Remarques
Contrôle Continu Intégral	Devoir surveillé			1		

Contacts

Kevin Caiveau

■ Kevin.Caiveau@bordeaux-inp.fr